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Built-in Functions and Code Blocks

Built-in functions

Code blocks

Boolean operators
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Loops

for

while
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Conditionals

if

if, else

if, elif
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Monte Carlo Integration - Revisited

Recall, if

I =

∫ b

a
f (x)dx

then
I = average of f on (a, b) ∗ (b − a)

I ≈ (b − a)
1

n

n∑
i=1

f (xi )

where xi are uniformly distributed random numbers between a and b
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Monte Carlo Integration - Python Program

def MCint ( ) :
import random
from math import s q r t

n = 100000
s = 0
f o r i i n ra ng e ( n ) :

x = random . u n i f o r m ( 0 , 1 )
s += s q r t ( 1 . 0 − x ∗∗2)

I = ( f l o a t (1 − 0)/ n )∗ s
p r i n t I

MCint ( )
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Monte Carlo Integration - A Better Program

def f 1 ( x ) :
from math import s q r t
return s q r t (1 − x ∗∗2)

def MCint ( f , a , b , n ) :
import random

s = 0
f o r i i n ra ng e ( n ) :

x = random . u n i f o r m ( a , b )
s += f ( x )

I = f l o a t ( b − a )/ n∗ s
return I
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Monte Carlo Integration - A Better Program
(continued)

a = 0
b = 1
n = 1000000

I = 4∗MCint ( f1 , a , b , n )

p r i n t I



Scientific Computing Learning Community

Programming

Monte Carlo Integration - Creating Modules

We have used modules

A module is a collection of useful data and functions

Functions in a module can be reused in different programs

If you have some general functions that can used in more than one
program, consider making a module

Making modules is easy: just collect functions in a file, and you
have a module
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Monte Carlo Integration - Creating Modules

Create a module functions (which provides various functions), that is
create a file functions.py (which contains definitions of various
functions).

from math import s q r t

def f 1 ( x ) :
return s q r t (1 − x ∗∗2)

def f 2 ( x ) :
return 1/ x
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Monte Carlo Integration - Creating Modules

Create a module MCinteg which provides the function MCint, that is
create a file MCinteg.py (which contains the definition of MCint).

def MCint ( f , a , b , n ) :
import random

s = 0
f o r i i n ra ng e ( n ) :

x = random . u n i f o r m ( a , b )
s += f ( x )

I = f l o a t ( b − a )/ n∗ s

return I
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Monte Carlo Integration - Creating Modules

Putting it all together

Import the modules you created and run your program

import f u n c t i o n s
import MCinteg

a = 0
b = 1
n = 1000000

I = MCinteg . MCint ( f u n c t i o n s . f1 , a , b , n )

p r i n t 4∗ I
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Trapezoidal Rule

We can approximate the integral

I =

∫ b

a
f (x)dx

as follows. For some n set h = b−a
n and compute the approximation

I ≈ h

[
f (a)

2
+

n−1∑
i=1

f (a + ih) +
f (b)

2

]
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Trapezoidal Rule - The Program

def T r a p e z o i d ( f , a , b , n ) :

h = ( b − a )/ f l o a t ( n )
s = f ( a ) / 2 . 0

f o r i i n ra ng e ( 1 , n ) :
s += f ( a + i ∗h )

s+= f ( b ) / 2 . 0

I = s ∗h

return I
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Using the Trapezoidal Rule to Approximate π

import f u n c t i o n s
import I n t e g

a = 0
b = 1
n = 1000

I = I n t e g . T r a p e z o i d ( f u n c t i o n s . f1 , a , b , n )

p r i n t 4∗ I
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Vectors and Vectorized Operations

Python (actually numpy) allows dealing with arrays or vectors

We can perform array computations, or vector operations (called
vectorization

Array computations are useful for more than plotting curves

Useful when we need to compute with large amounts of numbers,
we store the numbers in arrays and compute with arrays, giving
shorter and faster code
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Vectors and Vectorized Operations

In general a vector v is an n-tuple of numbers
v = (v0, v1, v2, . . . , vn−1)

We can do various mathematical operations on vectors

Vectors can be represented by lists, vi is stored as v[i]

Arrays are generalizations of vectors, these have multiple indices,
e.g., matrices

The number of indices in an array is the rank, or number of
dimensions

A vector is a one-dimensional, or rank 1 array

We use Numerical Python arrays instead of lists to represent
mathematical arrays (this is computationally more efficient)
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Plotting and Graphing

To graph a function f , we evaluate the function at points (in its
domain).

This yields points along the curve y = f (x), which we can store in one
dimensional arrays x and y

To obtain a graph we connect these points with line segments, this is
done programatically with plot(x, y)
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Plotting and Graphing

import numpy
import m a t p l o t l i b . p y p l o t as p l t

t = numpy . l i n s p a c e ( 0 , 3 , 5 1 )
y = t ∗∗2∗numpy . exp(− t ∗∗2)

p l t . p l o t ( t , y )
p l t . s a v e f i g ( ’ img1 . png ’ )
p l t . s a v e f i g ( ’ img1 . pdf ’ )
p l t . show ( )
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Plotting and Graphing
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